Identification and estimation of a bidding model for electronic auctions
Brent R. Hickman,
Timothy Hubbard and
Harry Paarsch
Quantitative Economics, 2017, vol. 8, issue 2, 505-551
Abstract:
Because of discrete bid increments, bidders at electronic auctions engage in shading instead of revealing their valuations, which would occur under the commonly assumed second‐price rule. We demonstrate that misspecifying the pricing rule can lead to biased estimates of the latent valuation distribution, and then explore identification and estimation of a model with a correctly specified pricing rule. A further challenge to econometricians is that only a lower bound on the number of participants at each auction is observed. From this bound, however, we establish nonparametric identification of the arrival process of bidders—the process that matches potential buyers to auction listings—which then allows us to identify the latent valuation distribution without imposing functional‐form assumptions. We propose a computationally tractable, sieve‐type estimator of the latent valuation distribution based on B‐splines, and then compare two parametric models of bidder participation, finding that a generalized Poisson model cannot be rejected by the empirical distribution of observables. Our structural estimates enable us to explore information rents and optimal reserve prices on eBay.
Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://hdl.handle.net/
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:8:y:2017:i:2:p:505-551
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().