Identifying dynamic spillovers of crime with a causal approach to model selection
Gregorio Caetano and
Vikram Maheshri
Quantitative Economics, 2018, vol. 9, issue 1, 343-394
Abstract:
Does crime in a neighborhood cause future crime? Without a source of quasi‐experimental variation in local crime, we develop an identification strategy that leverages a recently developed test of exogeneity (Caetano (2015)) to select a feasible regression model for causal inference. Using a detailed incident‐based data set of all reported crimes in Dallas from 2000 to 2007, we find some evidence of dynamic spillovers within certain types of crimes, but no evidence that lighter crimes cause more severe crimes. This suggests that a range of crime reduction policies that target lighter crimes (prescribed, for instance, by the “broken windows” theory of crime) should not be credited with reducing the violent crime rate. Our strategy involves a systematic investigation of endogeneity concerns and is particularly useful when rich data allow for the estimation of many regression models, none of which is agreed upon as causal ex ante.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
https://doi.org/10.3982/QE756
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:9:y:2018:i:1:p:343-394
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().