Learning in network games
Jaromír Kovářík,
Friederike Mengel and
José Romero Ciavatto
Quantitative Economics, 2018, vol. 9, issue 1, 85-139
Abstract:
We report the findings of experiments designed to study how people learn in network games. Network games offer new opportunities to identify learning rules, since on networks (compared to, e.g., random matching) more rules differ in terms of their information requirements. Our experimental design enables us to observe both which actions participants choose and which information they consult before making their choices. We use these data to estimate learning types using finite mixture models. Monitoring information requests turns out to be crucial, as estimates based on choices alone show substantial biases. We also find that learning depends on network position. Participants in more complex environments (with more network neighbors) tend to resort to simpler rules compared to those with only one network neighbor.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.3982/QE688
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:quante:v:9:y:2018:i:1:p:85-139
Ordering information: This journal article can be ordered from
https://www.econometricsociety.org/membership
Access Statistics for this article
More articles in Quantitative Economics from Econometric Society Contact information at EDIRC.
Bibliographic data for series maintained by Wiley Content Delivery ().