EconPapers    
Economics at your fingertips  
 

An Improved Framework for Uncertainty Analysis: Accounting for Unsuspected Errors

Alexander I. Shlyakhter

Risk Analysis, 1994, vol. 14, issue 4, 441-447

Abstract: I use an analogy with the history of physical measurements, population and energy projections, and analyze the trends in several data sets to quantify the overconfidence of the experts in the reliability of their uncertainty estimates. Data sets include (i) time trends in the sequential measurements of the same physical quantity; (ii) national population projections; and (iii) projections for the U.S., energy sector. Probabilities of large deviations for the true values are parametrized by an exponential distribution with the slope determined by the data. Statistics of past errors can be used in probabilistic risk assessment to hedge against unsuspected uncertainties and to include the possibility of human error into the framework of uncertainty analysis. By means of a sample Monte Carlo simulation of cancer risk caused by ingestion of benzene in soil, I demonstrate how the upper 95th percentiles of risk are changed when unsuspected uncertainties are included. I recommend to inflate the estimated uncertainties by default safety factors determined from the relevant historical data sets.

Date: 1994
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.1994.tb00262.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:14:y:1994:i:4:p:441-447

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:14:y:1994:i:4:p:441-447