EconPapers    
Economics at your fingertips  
 

Quantifying Water Pathogen Risk in an Epidemiological Framework

Joseph N. Eisenberg, Edmund Y. W. Seto, Adam W. Olivieri and Robert C. Spear

Risk Analysis, 1996, vol. 16, issue 4, 549-563

Abstract: Traditionally, microbial risk assessors have used point estimates to evaluate the probability that an individual will become infected. We developed a quantitative approach that shifts the risk characterization perspective from point estimate to distributional estimate, and from individual to population. To this end, we first designed and implemented a dynamic model that tracks traditional epidemiological variables such as the number of susceptible, infected, diseased, and immune, and environmental variables such as pathogen density. Second, we used a simulation methodology that explicitly acknowledges the uncertainty and variability associated with the data. Specifically, the approach consists of assigning probability distributions to each parameter, sampling from these distributions for Monte Carlo simulations, and using a binary classification to assess the output of each simulation. A case study is presented that explores the uncertainties in assessing the risk of giardiasis when swimming in a recreational impoundment using reclaimed water. Using literature‐based information to assign parameters ranges, our analysis demonstrated that the parameter describing the shedding of pathogens by infected swimmers was the factor that contributed most to the uncertainty in risk. The importance of other parameters was dependent on reducing the a priori range of this shedding parameter. By constraining the shedding parameter to its lower subrange, treatment efficiency was the parameter most important in predicting whether a simulation resulted in prevalences above or below non outbreak levels. Whereas parameters associated with human exposure were important when the shedding parameter was constrained to a higher subrange. This Monte Carlo simulation technique identified conditions in which outbreaks and/or nonoutbreaks are likely and identified the parameters that most contributed to the uncertainty associated with a risk prediction.

Date: 1996
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.1996.tb01100.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:16:y:1996:i:4:p:549-563

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:16:y:1996:i:4:p:549-563