Disparity in Quantitative Risk Assessment: A Review of Input Distributions
Bruce S. Binkowitz and
Daniel Wartenberg
Risk Analysis, 2001, vol. 21, issue 1, 75-90
Abstract:
Monte Carlo simulations are commonplace in quantitative risk assessments (QRAs). Designed to propagate the variability and uncertainty associated with each individual exposure input parameter in a quantitative risk assessment, Monte Carlo methods statistically combine the individual parameter distributions to yield a single, overall distribution. Critical to such an assessment is the representativeness of each individual input distribution. The authors performed a literature review to collect and compare the distributions used in published QRAs for the parameters of body weight, food consumption, soil ingestion rates, breathing rates, and fluid intake. To provide a basis for comparison, all estimated exposure parameter distributions were evaluated with respect to four properties: consistency, accuracy, precision, and specificity. The results varied depending on the exposure parameter. Even where extensive, well‐collected data exist, investigators used a variety of different distributional shapes to approximate these data. Where such data do not exist, investigators have collected their own data, often leading to substantial disparity in parameter estimates and subsequent choice of distribution. The present findings indicate that more attention must be paid to the data underlying these distributional choices. More emphasis should be placed on sensitivity analyses, quantifying the impact of assumptions, and on discussion of sources of variation as part of the presentation of any risk assessment results. If such practices and disclosures are followed, it is believed that Monte Carlo simulations can greatly enhance the accuracy and appropriateness of specific risk assessments. Without such disclosures, researchers will be increasing the size of the risk assessment “black box,” a concern already raised by many critics of more traditional risk assessments.
Date: 2001
References: Add references at CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://doi.org/10.1111/0272-4332.211091
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:21:y:2001:i:1:p:75-90
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().