Projecting Rates of Spread for Invasive Species
Michael G. Neubert and
Ingrid M. Parker
Risk Analysis, 2004, vol. 24, issue 4, 817-831
Abstract:
All else being equal, the faster an invading species spreads, the more dangerous its invasion. The projection of spread rate therefore ought to be a central part of the determination of invasion risk. Originally formulated in the 1970s to describe the spatial spread of advantageous alleles, integrodifference equation (IDE) models have since been co‐opted by population biologists to describe the spread of populations. More recently, they have been modified to include population structure and environmental variability. We review how IDE models are formulated, how they are parameterized, and how they can be analyzed to project spread rates and the sensitivity of those rates to changes in model parameters. For illustrative purposes, we apply these models to Cytisus scoparius, a large shrub in the legume family that is considered a noxious invasive species in eastern and western North America, Chile, Australia, and New Zealand.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/j.0272-4332.2004.00481.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:24:y:2004:i:4:p:817-831
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().