Cellular Automata‐Based Systematic Risk Analysis Approach for Emergency Response
Xuewei Ji,
Wenguo Weng and
Weicheng Fan
Risk Analysis, 2008, vol. 28, issue 5, 1247-1260
Abstract:
Emergency response is directly related to the allocation of emergency rescue resources. Efficient emergency response can reduce loss of life and property, limit damage from the primary impact, and minimize damage from derivative impacts. An appropriate risk analysis approach in the event of accidents is one rational way to assist emergency response. In this article, a cellular automata‐based systematic approach for conducting risk analysis in emergency response is presented. Three general rules, i.e., diffusive effect, transporting effect, and dissipative effect, are developed to implement cellular automata transition function. The approach takes multiple social factors such as population density and population sensitivity into consideration and it also considers risk of domino accidents that are increasing due to increasing congestion in industrial complexes of a city and increasing density of human population. In addition, two risk indices, i.e., individual risk and aggregated weighted risk, are proposed to assist decision making for emergency managers during emergency response. Individual risk can be useful to plan evacuation strategies, while aggregated weighted risk can help emergency managers to allocate rescue resources rationally according to the degree of danger in each vulnerable area and optimize emergency response programs.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2008.01104.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:28:y:2008:i:5:p:1247-1260
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().