EconPapers    
Economics at your fingertips  
 

A Multinomial‐Dirichlet Model for Analysis of Competing Hypotheses

Kristin A. Duncan and Jonathan L. Wilson

Risk Analysis, 2008, vol. 28, issue 6, 1699-1709

Abstract: Analysis of competing hypothesis, a method for evaluating explanations of observed evidence, is used in numerous fields, including counterterrorism, psychology, and intelligence analysis. We propose a Bayesian extension of the methodology, posing the problem in terms of a multinomial‐Dirichlet hierarchical model. The yet‐to‐be observed true hypothesis is regarded as a multinomial random variable and the evaluation of the evidence is treated as a structured elicitation of a prior distribution on the probabilities of the hypotheses. This model provides the user with measures of uncertainty for the probabilities of the hypotheses. We discuss inference, such as point and interval estimates of hypothesis probabilities, ratios of hypothesis probabilities, and Bayes factors. A simple example involving the stadium relocation of the San Diego Chargers is used to illustrate the method. We also present several extensions of the model that enable it to handle special types of evidence, including evidence that is irrelevant to one or more hypotheses, evidence against hypotheses, and evidence that is subject to deception.

Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2008.01139.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:28:y:2008:i:6:p:1699-1709

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:28:y:2008:i:6:p:1699-1709