Ensemble Habitat Mapping of Invasive Plant Species
Thomas J. Stohlgren,
Peter Ma,
Sunil Kumar,
Monique Rocca,
Jeffrey T. Morisette,
Catherine S. Jarnevich and
Nate Benson
Risk Analysis, 2010, vol. 30, issue 2, 224-235
Abstract:
Ensemble species distribution models combine the strengths of several species environmental matching models, while minimizing the weakness of any one model. Ensemble models may be particularly useful in risk analysis of recently arrived, harmful invasive species because species may not yet have spread to all suitable habitats, leaving species‐environment relationships difficult to determine. We tested five individual models (logistic regression, boosted regression trees, random forest, multivariate adaptive regression splines (MARS), and maximum entropy model or Maxent) and ensemble modeling for selected nonnative plant species in Yellowstone and Grand Teton National Parks, Wyoming; Sequoia and Kings Canyon National Parks, California, and areas of interior Alaska. The models are based on field data provided by the park staffs, combined with topographic, climatic, and vegetation predictors derived from satellite data. For the four invasive plant species tested, ensemble models were the only models that ranked in the top three models for both field validation and test data. Ensemble models may be more robust than individual species‐environment matching models for risk analysis.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2009.01343.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:30:y:2010:i:2:p:224-235
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().