EconPapers    
Economics at your fingertips  
 

Tree‐Based Logistic Regression Approach for Work Zone Casualty Risk Assessment

Jinxian Weng, Qiang Meng and David Z. W. Wang

Risk Analysis, 2013, vol. 33, issue 3, 493-504

Abstract: This study presents a tree‐based logistic regression approach to assessing work zone casualty risk, which is defined as the probability of a vehicle occupant being killed or injured in a work zone crash. First, a decision tree approach is employed to determine the tree structure and interacting factors. Based on the Michigan M‐94\I‐94\I‐94BL\I‐94BR highway work zone crash data, an optimal tree comprising four leaf nodes is first determined and the interacting factors are found to be airbag, occupant identity (i.e., driver, passenger), and gender. The data are then split into four groups according to the tree structure. Finally, the logistic regression analysis is separately conducted for each group. The results show that the proposed approach outperforms the pure decision tree model because the former has the capability of examining the marginal effects of risk factors. Compared with the pure logistic regression method, the proposed approach avoids the variable interaction effects so that it significantly improves the prediction accuracy.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2012.01879.x

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:33:y:2013:i:3:p:493-504

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:33:y:2013:i:3:p:493-504