Inferring an Augmented Bayesian Network to Confront a Complex Quantitative Microbial Risk Assessment Model with Durability Studies: Application to Bacillus Cereus on a Courgette Purée Production Chain
Clémence Sophie Rigaux Ancelet,
Frédéric Carlin,
Christophe Nguyen‐thé and
Isabelle Albert
Risk Analysis, 2013, vol. 33, issue 5, 877-892
Abstract:
The Monte Carlo (MC) simulation approach is traditionally used in food safety risk assessment to study quantitative microbial risk assessment (QMRA) models. When experimental data are available, performing Bayesian inference is a good alternative approach that allows backward calculation in a stochastic QMRA model to update the experts’ knowledge about the microbial dynamics of a given food‐borne pathogen. In this article, we propose a complex example where Bayesian inference is applied to a high‐dimensional second‐order QMRA model. The case study is a farm‐to‐fork QMRA model considering genetic diversity of Bacillus cereus in a cooked, pasteurized, and chilled courgette purée. Experimental data are Bacillus cereus concentrations measured in packages of courgette purées stored at different time‐temperature profiles after pasteurization. To perform a Bayesian inference, we first built an augmented Bayesian network by linking a second‐order QMRA model to the available contamination data. We then ran a Markov chain Monte Carlo (MCMC) algorithm to update all the unknown concentrations and unknown quantities of the augmented model. About 25% of the prior beliefs are strongly updated, leading to a reduction in uncertainty. Some updates interestingly question the QMRA model.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/j.1539-6924.2012.01888.x
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:33:y:2013:i:5:p:877-892
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().