EconPapers    
Economics at your fingertips  
 

Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo

Philip J. Schmidt, Katarina D. M. Pintar, Aamir M. Fazil and Edward Topp

Risk Analysis, 2013, vol. 33, issue 9, 1677-1693

Abstract: Dose‐response models are the essential link between exposure assessment and computed risk values in quantitative microbial risk assessment, yet the uncertainty that is inherent to computed risks because the dose‐response model parameters are estimated using limited epidemiological data is rarely quantified. Second‐order risk characterization approaches incorporating uncertainty in dose‐response model parameters can provide more complete information to decisionmakers by separating variability and uncertainty to quantify the uncertainty in computed risks. Therefore, the objective of this work is to develop procedures to sample from posterior distributions describing uncertainty in the parameters of exponential and beta‐Poisson dose‐response models using Bayes's theorem and Markov Chain Monte Carlo (in OpenBUGS). The theoretical origins of the beta‐Poisson dose‐response model are used to identify a decomposed version of the model that enables Bayesian analysis without the need to evaluate Kummer confluent hypergeometric functions. Herein, it is also established that the beta distribution in the beta‐Poisson dose‐response model cannot address variation among individual pathogens, criteria to validate use of the conventional approximation to the beta‐Poisson model are proposed, and simple algorithms to evaluate actual beta‐Poisson probabilities of infection are investigated. The developed MCMC procedures are applied to analysis of a case study data set, and it is demonstrated that an important region of the posterior distribution of the beta‐Poisson dose‐response model parameters is attributable to the absence of low‐dose data. This region includes beta‐Poisson models for which the conventional approximation is especially invalid and in which many beta distributions have an extreme shape with questionable plausibility.

Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://doi.org/10.1111/risa.12006

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:33:y:2013:i:9:p:1677-1693

Access Statistics for this article

More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().

 
Page updated 2025-03-20
Handle: RePEc:wly:riskan:v:33:y:2013:i:9:p:1677-1693