Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data
Kan Shao and
Jeffrey S. Gift
Risk Analysis, 2014, vol. 34, issue 1, 101-120
Abstract:
The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose‐response models. Current approaches do not explicitly address model uncertainty, and there is an existing need to more fully inform health risk assessors in this regard. In this study, a Bayesian model averaging (BMA) BMD estimation method taking model uncertainty into account is proposed as an alternative to current BMD estimation approaches for continuous data. Using the “hybrid” method proposed by Crump, two strategies of BMA, including both “maximum likelihood estimation based” and “Markov Chain Monte Carlo based” methods, are first applied as a demonstration to calculate model averaged BMD estimates from real continuous dose‐response data. The outcomes from the example data sets examined suggest that the BMA BMD estimates have higher reliability than the estimates from the individual models with highest posterior weight in terms of higher BMDL and smaller 90th percentile intervals. In addition, a simulation study is performed to evaluate the accuracy of the BMA BMD estimator. The results from the simulation study recommend that the BMA BMD estimates have smaller bias than the BMDs selected using other criteria. To further validate the BMA method, some technical issues, including the selection of models and the use of bootstrap methods for BMDL derivation, need further investigation over a more extensive, representative set of dose‐response data.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://doi.org/10.1111/risa.12078
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:34:y:2014:i:1:p:101-120
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().