A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging
Steven B. Kim,
Ralph L. Kodell and
Hojin Moon
Risk Analysis, 2014, vol. 34, issue 3, 453-464
Abstract:
In chemical and microbial risk assessments, risk assessors fit dose‐response models to high‐dose data and extrapolate downward to risk levels in the range of 1–10%. Although multiple dose‐response models may be able to fit the data adequately in the experimental range, the estimated effective dose (ED) corresponding to an extremely small risk can be substantially different from model to model. In this respect, model averaging (MA) provides more robustness than a single dose‐response model in the point and interval estimation of an ED. In MA, accounting for both data uncertainty and model uncertainty is crucial, but addressing model uncertainty is not achieved simply by increasing the number of models in a model space. A plausible set of models for MA can be characterized by goodness of fit and diversity surrounding the truth. We propose a diversity index (DI) to balance between these two characteristics in model space selection. It addresses a collective property of a model space rather than individual performance of each model. Tuning parameters in the DI control the size of the model space for MA.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://doi.org/10.1111/risa.12104
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:34:y:2014:i:3:p:453-464
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().