Modeling Pathology Workload and Complexity to Manage Risks and Improve Patient Quality and Safety
David M. Vanlandingham,
Wesley Hampton,
Kimberly M. Thompson and
Kamran Badizadegan
Risk Analysis, 2020, vol. 40, issue 2, 421-434
Abstract:
Anatomic pathology (AP) laboratories provide critical diagnostic information that help determine patient treatments and outcomes, but the risks of AP operations and their impact on patient safety and quality of care remain poorly recognized and undermanaged. Hospital‐based laboratories face an operational and risk management challenge because clinical work of unknown quantity and complexity arrives with little advance notice, which results in fluctuations in workload that can push operations beyond planned capacity, leading to diagnostic delays and potential errors. Modeling the dynamics of workload and complexity in AP offers the opportunity to better use available information to manage risks. We developed a stock‐and‐flow model of a typical AP laboratory operation and identified key exogenous inputs that drive AP work. To test the model, we generated training and validations data sets by combining data from the electronic medical records and laboratory information systems over multiple years. We demonstrate the implementation of 10‐day AP work forecast generated on a daily basis, and show its performance in comparison with actual work. Although the model somewhat underpredicts work as currently implemented, it provides a framework for prospective management of resources to ensure quality during workload surges. Although full implementation requires additional model development, we show that AP workload largely depends on few and accessible clinical inputs. Recognizing that level loading of work in a hospital is not practical, predictive modeling of work can empower laboratories to triage, schedule, or mobilize resources more effectively and better manage risks that reduce the quality or timeliness of diagnostic information.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/risa.13393
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:40:y:2020:i:2:p:421-434
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().