Outbreak‐Based Giardia Dose–Response Model Using Bayesian Hierarchical Markov Chain Monte Carlo Analysis
Tucker R. Burch
Risk Analysis, 2020, vol. 40, issue 4, 705-722
Abstract:
Giardia is a zoonotic gastrointestinal parasite responsible for a substantial global public health burden, and quantitative microbial risk assessment (QMRA) is often used to forecast and manage this burden. QMRA requires dose–response models to extrapolate available dose–response data, but the existing model for Giardia ignores valuable dose–response information, particularly data from several well‐documented waterborne outbreaks of giardiasis. The current study updates Giardia dose–response modeling by synthesizing all available data from outbreaks and experimental studies using a Bayesian random effects dose–response model. For outbreaks, mean doses (D) and the degree of spatial and temporal aggregation among cysts were estimated using exposure assessment implemented via two‐dimensional Monte Carlo simulation, while potential overreporting of outbreak cases was handled using published overreporting factors and censored binomial regression. Parameter estimation was by Markov chain Monte Carlo simulation and indicated that a typical exponential dose–response parameter for Giardia is r = 1.6 × 10−2 [3.7 × 10−3, 6.2 × 10−2] (posterior median [95% credible interval]), while a typical morbidity ratio is m = 3.8 × 10−1 [2.3 × 10−1, 5.5 × 10−1]. Corresponding (logistic‐scale) variance components were σr = 5.2 × 10−1 [1.1 × 10−1, 9.6 × 10−1] and σm = 9.3 × 10−1 [7.0 × 10−2, 2.8 × 100], indicating substantial variation in the Giardia dose–response relationship. Compared to the existing Giardia dose–response model, the current study provides more representative estimation of uncertainty in r and novel quantification of its natural variability. Several options for incorporating variability in r (and m) into QMRA predictions are discussed, including incorporation via Monte Carlo simulation as well as evaluation of the current study's model using the approximate beta‐Poisson.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://doi.org/10.1111/risa.13436
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wly:riskan:v:40:y:2020:i:4:p:705-722
Access Statistics for this article
More articles in Risk Analysis from John Wiley & Sons
Bibliographic data for series maintained by Wiley Content Delivery ().