Artificial Neural Networks as a Level-2 Trigger for the H1 Experiment: Status of the Hardware Implementation
D. Goldner,
H. Getta,
M. Kolander,
T. Krämerkämper,
H. Kolanoski,
J. Fent,
W. Fröchtenicht,
F. Gaede,
A. Gruber,
J. Huber,
C. Kiesling,
T. Kobler,
J. Köhne,
J. Möck,
P. Ribarics,
S. Udluft,
D. Westner and
T. Zobel
Additional contact information
D. Goldner: Institut für Physik, Universität Dortmund, Dortmund, Germany
H. Getta: Institut für Physik, Universität Dortmund, Dortmund, Germany
M. Kolander: Institut für Physik, Universität Dortmund, Dortmund, Germany
T. Krämerkämper: Institut für Physik, Universität Dortmund, Dortmund, Germany
H. Kolanoski: Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
J. Fent: Max-Planck-Institut für Physik, Munich, Germany
W. Fröchtenicht: Max-Planck-Institut für Physik, Munich, Germany
F. Gaede: Max-Planck-Institut für Physik, Munich, Germany
A. Gruber: Max-Planck-Institut für Physik, Munich, Germany
J. Huber: Max-Planck-Institut für Physik, Munich, Germany
C. Kiesling: Max-Planck-Institut für Physik, Munich, Germany
T. Kobler: Max-Planck-Institut für Physik, Munich, Germany
J. Köhne: Max-Planck-Institut für Physik, Munich, Germany
J. Möck: Max-Planck-Institut für Physik, Munich, Germany
P. Ribarics: Max-Planck-Institut für Physik, Munich, Germany
S. Udluft: Max-Planck-Institut für Physik, Munich, Germany
D. Westner: Max-Planck-Institut für Physik, Munich, Germany
T. Zobel: Max-Planck-Institut für Physik, Munich, Germany
International Journal of Modern Physics C (IJMPC), 1995, vol. 06, issue 04, 541-548
Abstract:
Triggering at the HERA ep collider is challenging because of the high bunch crossing rate and an expected large background. In the H1 experiment, a trigger decision is made in four steps (level 1–4), stepwise decreasing the event rate and allowing for more sophisticated trigger decisions. The time available for L2 is about 20 μs. We have proposed to use an artificial neural network (ANN) for the L2 trigger based on the CNAPS-1064 chip available from Adaptive Solutions, (Oregon, USA). The intrinsic parallelism of the ANN algorithm together with the dedicated hardware offers fast processing of the trigger informations. The trigger system uses up to 10 decision units, each consisting of a Pattern Recognition Module (PRM) and a Data Distribution Board (DDB). A DDB receives the L2 data stream and generates the network inputs used by the algorithms on the PRM. A PRM is a commercial VME board carrying the CNAPS processors.
Date: 1995
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S012918319500040X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:06:y:1995:i:04:n:s012918319500040x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S012918319500040X
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().