EconPapers    
Economics at your fingertips  
 

Numerical Solutions of the Von Karman Equations for a Thin Plate

Pedro Patrício da Silva () and Werner Krauth ()
Additional contact information
Pedro Patrício da Silva: CNRS-Laboratoire de Physique Statistique de l'ENS, 24, rue Lhomond; F-75231 Paris Cedex 05, France
Werner Krauth: CNRS-Laboratoire de Physique Statistique de l'ENS, 24, rue Lhomond; F-75231 Paris Cedex 05, France

International Journal of Modern Physics C (IJMPC), 1997, vol. 08, issue 02, 427-434

Abstract: In this paper, we present an algorithm for the solution of the von Karman equations of elasticity theory and related problems. Our method of successive reconditioning is able to avoid convergence problems at any ratio of the nonlinear stretching and the pure bending energies. We illustrate the power of the method by numerical calculations of pinched or compressed plates subject to fixed boundaries.

Keywords: Nonlinear Elasticity; Plate Mechanics; von Karman Equations; Finite Element Method; Large-Dimensional Minimization (search for similar items in EconPapers)
Date: 1997
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183197000357
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:08:y:1997:i:02:n:s0129183197000357

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183197000357

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:08:y:1997:i:02:n:s0129183197000357