STRUCTURAL AND ELECTRONIC PROPERTIES OF CARBON NANOTUBES
Şakir Erkoç ()
Additional contact information
Şakir Erkoç: Department of Physics, Middle East Technical University, 06531 Ankara, Turkey
International Journal of Modern Physics C (IJMPC), 2000, vol. 11, issue 01, 175-182
Abstract:
The structural and electronic properties of optimized open-ended single-wall carbon nanotubes with zigzag geometry have been investigated. The calculations were performed using molecular mechanics, extended Hückel, and AM1–RHF semiempirical molecular orbital methods. It has been found that the density of states of the zigzag model is sensitive to the tube size and changes as the tube length increases. On the other hand the energetics of the tube shows an almost linear dependence to the tube length, and a converging characteristics with respect to the number of hexagons forming the tube.
Keywords: Carbon Nanotubes; Electronic Structure; Semiempirical Methods (search for similar items in EconPapers)
Date: 2000
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183100000158
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:11:y:2000:i:01:n:s0129183100000158
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183100000158
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().