ACCELERATING CONVERGENCE OF MOLECULAR DYNAMICS-BASED STRUCTURAL RELAXATION
A. Christensen ()
Additional contact information
A. Christensen: Center for Atomic Scale Materials Physics, Department of Physics, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
International Journal of Modern Physics C (IJMPC), 2005, vol. 16, issue 02, 193-223
Abstract:
We describe strategies to accelerate the terminal stage of molecular dynamics (MD)-based relaxation algorithms, where a large fraction of the computational resources are used. First, we analyze the qualitative and quantitative behavior of the QuickMin family of MD relaxation algorithms and explore the influence of spectral properties and dimensionality of the molecular system on the algorithm efficiency. We test two algorithms, the MinMax and Lanczos, for spectral estimation from an MD trajectory, and use this to derive a practical scheme of time step adaptation in MD relaxation algorithms to improve efficiency. We also discuss the implementation aspects. Secondly, we explore the final state refinement acceleration by a combination with the conjugate gradient technique, where the key ingredient is an implicit corrector step. Finally, we test the feasibility of passive Hessian matrix accumulation from an MD trajectory, as another route for final phase acceleration. Our suggestions may be implemented within most MD quench implementations with a few, straightforward lines of code, thus maintaining the appealing simplicity of the MD quench algorithms. In this paper, we also bridge the conceptual gap between the MD quench algorithms inspired from physics and the mathematically rooted line search algorithms.
Keywords: Structural optimization; molecular dynamics relaxation; time step adaptation; spectral estimation; Lanczos algorithms (search for similar items in EconPapers)
Date: 2005
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183105007042
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:16:y:2005:i:02:n:s0129183105007042
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183105007042
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().