EconPapers    
Economics at your fingertips  
 

MIXED ALGORITHMS IN THE ISING MODEL ON DIRECTED BARABÁSI–ALBERT NETWORKS

F. W. S. Lima ()
Additional contact information
F. W. S. Lima: Departamento de Física, Universidade Federal do Piauí, 57072-970 Teresina - PI, Brazil

International Journal of Modern Physics C (IJMPC), 2006, vol. 17, issue 06, 785-793

Abstract: On directed Barabási–Albert networks with two and seven neighbours selected by each added site, the Ising model does not seem to show a spontaneous magnetisation. Instead, the decay time for flipping of the magnetisation follows an Arrhenius law for Metropolis and Glauber algorithms, but for Wolff cluster flipping the magnetisation decays exponentially with time. On these networks the magnetisation behaviour of the Ising model, with Glauber, HeatBath, Metropolis, Wolf or Swendsen–Wang algorithm competing against Kawasaki dynamics, is studied by Monte Carlo simulations. We show that the model exhibits the phenomenon of self-organisation (= stationary equilibrium) defined in Ref. 8 when Kawasaki dynamics is not dominant in its competition with Glauber, HeatBath and Swendsen–Wang algorithms. Only for Wolff cluster flipping the magnetisation, this phenomenon occurs after an exponentially decay of magnetisation with time. The Metropolis results are independent of competition. We also study the same process of competition described above but with Kawasaki dynamics at the same temperature as the other algorithms. The obtained results are similar for Wolff cluster flipping, Metropolis and Swendsen–Wang algorithms but different for HeatBath.

Keywords: Monte Carlo simulation; Ising; networks; competing (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183106008753
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:17:y:2006:i:06:n:s0129183106008753

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183106008753

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:17:y:2006:i:06:n:s0129183106008753