EconPapers    
Economics at your fingertips  
 

CRITICAL BEHAVIOR OF THE CONTACT PROCESS DELAYED BY INFECTION AND IMMUNIZATION PERIODS

P. C. Da Silva, M. L. Lyra, L. R. Da Silva, G. Corso and U. L. Fulco ()
Additional contact information
P. C. Da Silva: Instituto Federal de Educação, Ciência e Tecnologia, do Rio Grande do Norte, 59015-000 Natal-RN, Brazil
M. L. Lyra: Instituto de Física, Universidade Federal de Alagoas, 57072-970 Maceió-AL, Brazil
L. R. Da Silva: Departamento de Física, Universidade Federal do Rio, Grande do Norte, 59072-970 Natal-RN, Brazil
G. Corso: Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil
U. L. Fulco: Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN, Brazil

International Journal of Modern Physics C (IJMPC), 2011, vol. 22, issue 06, 563-571

Abstract: We analyze the absorbing state phase transition exhibited by two distinct unidimensional delayed contact process (CP). The first is characterized by the introduction of an infection period and the second by an immune period in the dynamics of the original model. We characterize these CP by the quantitiestd(infection or disease period) andti(immune period). The quantitytdcorresponds to the period interval an individual remains infected after being contaminated, while the periodtiis the time interval an individual remains immune after being cured. We used Monte Carlo simulations to compute the critical parameters associated with the absorbing state phase transition exhibited by these models. We find two distinct power-law scale relations for the critical infection rate$\lambda_{{\rm in}}^{*} \propto t_{{\rm d}}^{-\mu_{{\rm d}}}$and the critical cure rate$\lambda_{{\rm cu}_{\rm c}}^{*} \propto t_{{\rm i}}^{-\mu_{{\rm i}}}$. For the CP delayed by the minimum infection period we find μd= 0.98, while we obtained μi= 0.80 for the case of a delay due to immunity. In addition, we used a finite-size scaling analysis to estimate the critical exponents β/ν and ν, and found that these models belong to the universality class of directed percolation irrespective to the time delay.

Keywords: Stochastic models; contact process; critical exponents; directed percolation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183111016440
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:22:y:2011:i:06:n:s0129183111016440

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183111016440

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:22:y:2011:i:06:n:s0129183111016440