EconPapers    
Economics at your fingertips  
 

Nonlocal electrical diffusion equation

J. F. Gómez-Aguilar (), R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, M. Benavides-Cruz and C. Calderón-Ramón
Additional contact information
J. F. Gómez-Aguilar: Cátedras CONACYT, Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira, S/N, Col. Palmira C.P. 62490, Cuernavaca, Morelos, México
R. F. Escobar-Jiménez: Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca, Morelos, México
V. H. Olivares-Peregrino: Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca, Morelos, México
M. Benavides-Cruz: Facultad de Ingeniería en Electrónica y Comunicaciones, Campus
C. Calderón-Ramón: Facultad de Ingeniería en Electrónica y Comunicaciones, Campus

International Journal of Modern Physics C (IJMPC), 2016, vol. 27, issue 01, 1-12

Abstract: In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

Keywords: Fractional diffusion current; Caputo derivative; Mittag–Leffler function; subdiffusion; superdiffusion (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183116500078
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:27:y:2016:i:01:n:s0129183116500078

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183116500078

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:27:y:2016:i:01:n:s0129183116500078