EconPapers    
Economics at your fingertips  
 

Chaotic attractors based on unstable dissipative systems via third-order differential equation

E. Campos-Cantón ()
Additional contact information
E. Campos-Cantón: División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4 sección, San Luis Potosí, S.L.P., CP. 78216, México

International Journal of Modern Physics C (IJMPC), 2016, vol. 27, issue 01, 1-11

Abstract: In this paper, we present an approach how to yield 1D, 2D and 3D-grid multi-scroll chaotic systems in R3 based on unstable dissipative systems via third-order differential equation. This class of systems is constructed by a switching control law(SCL) changing the equilibrium point of an unstable dissipative system. The switching control law that governs the position of the equilibrium point varies according to the number of scrolls displayed in the attractor.

Keywords: Unstable dissipative systems; multiscrolls attractors; chaos; jerk equation; saddle equilibria (search for similar items in EconPapers)
Date: 2016
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S012918311650008X
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:27:y:2016:i:01:n:s012918311650008x

Ordering information: This journal article can be ordered from

DOI: 10.1142/S012918311650008X

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:27:y:2016:i:01:n:s012918311650008x