High solar activity predictions through an artificial neural network
M. G. Orozco-Del-Castillo (),
J. C. Ortiz-Alemán (),
C. Couder-Castañeda (),
J. J. Hernández-Gómez and
A. Solís-Santomé ()
Additional contact information
M. G. Orozco-Del-Castillo: Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, Ciudad de México 07730, México
J. C. Ortiz-Alemán: Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, Ciudad de México 07730, México
C. Couder-Castañeda: Centro de Desarrollo Aeroespacial, Instituto Politécnico Nacional, Belisario Domínguez 22, Col. Centro, Delegación Cuauhtémoc, Ciudad de México 06010, México
J. J. Hernández-Gómez: Centro de Desarrollo Aeroespacial, Instituto Politécnico Nacional, Belisario Domínguez 22, Col. Centro, Delegación Cuauhtémoc, Ciudad de México 06010, México
A. Solís-Santomé: Escuela Superior de Ingeniería Mecánica y Eléctrica, Instituto Politécnico Nacional, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, Ciudad de Mexico 07738, Mexico
International Journal of Modern Physics C (IJMPC), 2017, vol. 28, issue 06, 1-16
Abstract:
The effects of high-energy particles coming from the Sun on human health as well as in the integrity of outer space electronics make the prediction of periods of high solar activity (HSA) a task of significant importance. Since periodicities in solar indexes have been identified, long-term predictions can be achieved. In this paper, we present a method based on an artificial neural network to find a pattern in some harmonics which represent such periodicities. We used data from 1973 to 2010 to train the neural network, and different historical data for its validation. We also used the neural network along with a statistical analysis of its performance with known data to predict periods of HSA with different confidence intervals according to the three-sigma rule associated with solar cycles 24–26, which we found to occur before 2040.
Keywords: Artificial neural network (ANN); solar cycle prediction; pattern recognition; ground level enhancement (GLE); high solar activity (HSA) (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183117500759
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:28:y:2017:i:06:n:s0129183117500759
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183117500759
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().