A stochastic reaction-diffusion model for protein aggregation on DNA
Nikolaos K. Voulgarakis ()
Additional contact information
Nikolaos K. Voulgarakis: Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
International Journal of Modern Physics C (IJMPC), 2017, vol. 28, issue 08, 1-13
Abstract:
Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.
Keywords: Protein-DNA interaction; stochastic reaction-diffusion modeling; reversible particle aggregation; computational biophysics (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183117501029
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:28:y:2017:i:08:n:s0129183117501029
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183117501029
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().