Gibbs measures with memory of length 2 on an arbitrary-order Cayley tree
Hasan Akın ()
Additional contact information
Hasan Akın: Ceyhun Atuf Kansu Caddesi 1164, Sokak 9/4, TR06105, Çankaya, Ankara, Turkey
International Journal of Modern Physics C (IJMPC), 2018, vol. 29, issue 02, 1-21
Abstract:
In this paper, we consider the Ising-Vanniminus model on an arbitrary-order Cayley tree. We generalize the results conjectured by Akın [Chinese J. Phys. 54(4), 635–649 (2016) and Int. J. Mod. Phys. B 31(13), 1750093 (2017)] for an arbitrary-order Cayley tree. We establish the existence and a full classification of translation-invariant Gibbs measures (TIGMs) with a memory of length 2 associated with the model on arbitrary-order Cayley tree. We construct the recurrence equations corresponding to the generalized ANNNI model. We satisfy the Kolmogorov consistency condition. We propose a rigorous measure-theoretical approach to investigate the Gibbs measures with a memory of length 2 for the model. We explain if the number of branches of the tree does not change the number of Gibbs measures. Also, we try to determine when the phase transition does occur.
Keywords: Solvable lattice models; rigorous results in statistical mechanics; Gibbs measures; Ising–Vannimenus model; phase transition (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S012918311850016X
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:29:y:2018:i:02:n:s012918311850016x
Ordering information: This journal article can be ordered from
DOI: 10.1142/S012918311850016X
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().