EconPapers    
Economics at your fingertips  
 

Consensus formation in continuous opinion dynamics on quasiperiodic lattices

T. F. A. Alves (), F. W. S. Lima, A. Macedo-Filho and G. A. Alves
Additional contact information
T. F. A. Alves: Departamento de Física, Universidade Federal do Piauí, 57072-970 Teresina, Piauí, Brazil
F. W. S. Lima: Departamento de Física, Universidade Federal do Piauí, 57072-970 Teresina, Piauí, Brazil
A. Macedo-Filho: Campus Prof. Antonio Geovanne Alves de Sousa, Universidade Estadual do Piauí, 64260-000 Piripiri, Piauí, Brazil
G. A. Alves: Departamento de Física, Universidade Estadual do Piauí, 64002-150 Teresina, Piauí, Brazil

International Journal of Modern Physics C (IJMPC), 2020, vol. 31, issue 01, 1-12

Abstract: We studied the Biswas–Chatterjee–Sen (BCS) consensus formation model, also known as the Kinetic Continuous Opinion Dynamics (KCOD) model on quasiperiodic lattices by using Kinetic Monte Carlo simulations and Finite Size Scaling technique. Our results are consistent with a continuous phase transition, controlled by an external noise. We obtained the order parameter M, defined as the averaged opinion, the fourth-order Binder cumulant U and susceptibility χ as functions of the noise parameter. We estimated the critical noises for Penrose and Ammann–Beenker lattices. We also considered seven-fold and nine-fold quasiperiodic lattices and estimated the respective critical noises as well. Irrespective of rotational and translational long-range order of the lattice, the system falls in the same universality class of the two-dimensional Ising model. Quasiperiodic order is irrelevant and it does not change any critical exponents for BCS model.

Keywords: Consensus formation model; BCS model; continuous phase transition; critical exponents (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183120500126
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:31:y:2020:i:01:n:s0129183120500126

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183120500126

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:31:y:2020:i:01:n:s0129183120500126