Approximate solutions of one-dimensional systems with fractional derivative
A. Ferrari,
M. Gadella,
L. P. Lara and
E. Santillan Marcus
Additional contact information
A. Ferrari: Departamento de Matemática, CONICET-Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario, Argentina
M. Gadella: #x2020;Departamento de Física, Teórica Atómica y Optica and IMUVA, Universidad de Valladolid, 47011 Valladolid, Spain
L. P. Lara: #x2021;Instituto de Física Rosario, CONICET-UNR, Bv. 27 de Febrero, S2000EKF Rosario, Santa Fe, Argentina
E. Santillan Marcus: #xA7;Departamento de Matemática, Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario, Argentina
International Journal of Modern Physics C (IJMPC), 2020, vol. 31, issue 07, 1-17
Abstract:
The fractional calculus is useful to model nonlocal phenomena. We construct a method to evaluate the fractional Caputo derivative by means of a simple explicit quadratic segmentary interpolation. This method yields to numerical resolution of ordinary fractional differential equations. Due to the nonlocality of the fractional derivative, we may establish an equivalence between fractional oscillators and ordinary oscillators with a dissipative term.
Keywords: Caputo fractional derivative; segmentary interpolation; friction systems; fractional van der Pole equation (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183120500928
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:31:y:2020:i:07:n:s0129183120500928
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183120500928
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().