Deep neural networks-based classification optimization by reducing the feature dimensionality with the variants of gravitational search algorithm
Asha ()
Additional contact information
Asha: Department of Computer Science, Bhaskaracharya College of Applied Sciences, Sector-2, Phase-1, Dwarka, New Delhi 110075, University of Delhi, New Delhi, India
International Journal of Modern Physics C (IJMPC), 2021, vol. 32, issue 10, 1-22
Abstract:
The optimization of the problems significantly improves the solution of the complex problems. The reduction in the feature dimensionality is enormously salient to reduce the redundant features and improve the system accuracy. In this paper, an amalgamation of different concepts is proposed to optimize the features and improve the system classification. The experiment is performed on the facial expression detection application by proposing the amalgamation of deep neural network models with the variants of the gravitational search algorithm. Facial expressions are the movement of the facial components such as lips, nose, eyes that are considered as the features to classify human emotions into different classes. The initial feature extraction is performed with the local binary pattern. The extracted feature set is optimized with the variants of gravitational search algorithm (GSA) as standard gravitational search algorithm (SGSA), binary gravitational search algorithm (BGSA) and fast discrete gravitational search algorithm (FDGSA). The deep neural network models of deep convolutional neural network (DCNN) and extended deep convolutional neural network (EDCNN) are employed for the classification of emotions from imagery datasets of JAFFE and KDEF. The fixed pose images of both the datasets are acquired and comparison based on average recognition accuracy is performed. The comparative analysis of the mentioned techniques and state-of-the-art techniques illustrates the superior recognition accuracy of the FDGSA with the EDCNN technique.
Keywords: Gravitational search algorithm; binary gravitational search algorithm; fast discrete gravitational search algorithm; deep neural network; deep convolutional neural network; facial expressions; facial expression recognition; human emotion detection (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183121501370
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:32:y:2021:i:10:n:s0129183121501370
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183121501370
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().