Adjusted dynamics of COVID-19 pandemic due to herd immunity in Bangladesh
Md. Enamul Hoque (),
Md. Shariful Islam (),
Susanta Kumar Das (),
Dipak Kumar Mitra () and
Mohammad Ruhul Amin
Additional contact information
Md. Enamul Hoque: Computational Physics Group, Department of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
Md. Shariful Islam: Department of Mathematics and Physics, North South University, Bashundhara, Dhaka 1229, Bangladesh
Susanta Kumar Das: Department of Physics, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
Dipak Kumar Mitra: Department of Public Health North South University, Bashundhara, Dhaka 1229, Bangladesh
Mohammad Ruhul Amin: Computer and Information Science, Fordham University, New York, USA
International Journal of Modern Physics C (IJMPC), 2021, vol. 32, issue 10, 1-21
Abstract:
Amid growing debate between scientists and policymakers on the trade-off between public safety and reviving economy during the COVID-19 pandemic, the government of Bangladesh decided to relax the countrywide lockdown restrictions from the beginning of June 2020. Instead, the Ministry of Public Affairs officials have declared some parts of the capital city and a few other districts as red zones or high-risk areas based on the number of people infected in the late June 2020. Nonetheless, the COVID-19 infection rate had been increasing in almost every other part of the country. Ironically, rather than ensuring rapid tests and isolation of COVID-19 patients, from the beginning of July 2020, the Directorate General of Health Services restrained the maximum number of tests per laboratory. Thus, the health experts have raised the question of whether the government is heading toward achieving herd immunity instead of containing the COVID-19 pandemic. In this paper, the dynamics of the pandemic due to SARS-CoV-2 in Bangladesh is analyzed with integrated the Unscented Kalman Filter (UKF) in the SIRD model. We demonstrate that the herd immunity threshold can be reduced to 31% than that of 60% by considering age group cluster analysis resulting in a total of 53.0 million susceptible populations. With the data of COVID-19 cases till January, 2021, the time-varying reproduction numbers are used to explain the nature of the pandemic. Based on the estimations of active, severe and critical cases, we discuss a set of policy recommendations to improve the current pandemic control methods in Bangladesh.
Keywords: Herd immunity; SARS-CoV-2; Bangladesh pandemic; effect of lockdown; reproduction number; case fatality rate and vaccine (search for similar items in EconPapers)
Date: 2021
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183121501400
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:32:y:2021:i:10:n:s0129183121501400
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183121501400
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().