A virtual force method to rectify the equation of state of the lattice Boltzmann models
Abed Zadehgol ()
Additional contact information
Abed Zadehgol: Department of Mechanical Engineering, University of Tehran, Rezvanshahr 43841-119, Iran
International Journal of Modern Physics C (IJMPC), 2022, vol. 33, issue 02, 1-8
Abstract:
In this work, to rectify the equation of state (EOS) of a recently introduced constant speed entropic kinetic model (CSKM), a virtual force method is proposed. The CSKM, as shown in Zadehgol and Ashrafizaadeh [J. Comp. Phys. 274, 803 (2014)] and Zadehgol [Phys. Rev. E 91, 063311 (2015)], is an entropic kinetic model with unconventional entropies of Burg and Tsallis. The dependence of the pressure on the velocity, in the CSKM, was addressed and it was shown that it can be rectified by inserting rest particles into the model. This work shows that this dependence can also be removed by treating the pressure gradient as a pseudo force term, expanding the source term using the Fourier series, and applying the modified method of Khazaeli et al. [Phys. Rev. E 98, 053303 (2018)]. The proposed method can potentially be used to remove other pseudo-force error terms of the CSKM, e.g. the residual error terms which become significant at high Mach numbers, ensuring thermodynamic consistency of the entropic model, at the compressible flow regimes. The accuracy of the method is verified by simulating benchmark flows.
Keywords: Entropic kinetic models; virtual force; equation of state (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183122500255
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:33:y:2022:i:02:n:s0129183122500255
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183122500255
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().