Investigation of the chemical ordering and thermal properties of the Rh–Ag–Au nanoalloys
Huseyin Yildirim ()
Additional contact information
Huseyin Yildirim: Yenice Vocational School, Karabuk University, Karabuk, Turkey
International Journal of Modern Physics C (IJMPC), 2022, vol. 33, issue 06, 1-16
Abstract:
In this paper, the melting behaviors of Rh–Ag–Au nanoalloys are investigated with MD simulation. For Rh–Ag–Au nanoalloys, icosahedron structure was considered. The local optimizations of Rh–Ag–Au nanoalloys were carried out with the BH algorithm. The interatomic interactions were modeled with the Gupta potential. The local optimization results of Rh–Ag–Au nanoalloys show that Au and Ag atoms prefer to locate on the surface, and Rh atoms prefer to locate in the inner shells. The bond order parameter result is compatible with the excess energy analysis. It is noted that structures with more Ag–Au bonds are more energetically stable. Caloric curve, heat capacity, Lindemann index, and RMSD methods were used for estimating the melting temperatures of Rh–Ag–Au nanoalloys. According to the simulation results, melting temperatures depend on the composition. Also, it is discovered that nanoalloys are generally melting in two stages. Surface melting of the third shell is occupied by Ag and Au atoms, and then homogeneous melting of the inner shells is occupied by Rh atoms. It is found that the difference between surface melting temperatures and homogeneous melting temperatures in Ag-poor compositions is more significant than that of Ag-rich nanoalloys. In addition, the melting temperatures of the nanoalloys are found to be increased as the size of nanoalloys increases.
Keywords: Nanoalloys; melting behaviors; rhodium; molecular dynamics (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183122500802
Access to full text is restricted to subscribers
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:33:y:2022:i:06:n:s0129183122500802
Ordering information: This journal article can be ordered from
DOI: 10.1142/S0129183122500802
Access Statistics for this article
International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann
More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().