EconPapers    
Economics at your fingertips  
 

Modeling the spread of an epidemic in presence of vaccination using cellular automata

Agniva Datta () and Muktish Acharyya
Additional contact information
Agniva Datta: Department of Physics, Presidency University, 86/1 College Street, Kolkata 700073, India
Muktish Acharyya: Department of Physics, Presidency University, 86/1 College Street, Kolkata 700073, India

International Journal of Modern Physics C (IJMPC), 2022, vol. 33, issue 07, 1-17

Abstract: The results of Kermack–McKendrick SIR model are planned to be reproduced by cellular automata (CA) lattice model. The CA algorithms are proposed to study the model of an epidemic, systematically. The basic goal is to capture the effects of spreading of infection over a scale of length. This CA model can provide the rate of growth of the infection over the space which was lacking in the mean-field like susceptible-infected-removed (SIR) model. The motion of the circular front of an infected cluster shows a linear behavior in time. The correlation of a particular site to be infected with respect to the central site is also studied. The outcomes of the CA model are in good agreement with those obtained from SIR model. The results of vaccination have been also incorporated in the CA algorithm with a satisfactory degree of success. The advantage of the present model is that it can shed a considerable amount of light on the physical properties of the spread of a typical epidemic in a simple, yet robust way.

Keywords: Kermack–McKendrick model; epidemic; vaccination; cellular automata; lattice model of epidemic; velocity of epidemic spread (search for similar items in EconPapers)
Date: 2022
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183122500942
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:33:y:2022:i:07:n:s0129183122500942

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183122500942

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:33:y:2022:i:07:n:s0129183122500942