EconPapers    
Economics at your fingertips  
 

GPU acceleration of Swendsen–Wang dynamics

Tristan Protzman () and Joel Giedt
Additional contact information
Tristan Protzman: Department of Physics, Lehigh University, Bethlehem, PA 18015, USA
Joel Giedt: ��Department of Physics, Applied Physics and Astronomy Rensselaer Polytechnic Institute, Troy, NY 12180, USA

International Journal of Modern Physics C (IJMPC), 2024, vol. 35, issue 01, 1-11

Abstract: When simulating a lattice system near its critical temperature, local algorithms for modeling the system’s evolution can introduce very large autocorrelation times into sampled data. This critical slowing down places restrictions on the analysis that can be completed in a timely manner of the behavior of systems around the critical point. Because it is often desirable to study such systems around this point, a new algorithm must be introduced. Therefore, we turn to cluster algorithms, such as the Swendsen–Wang algorithm and the Wolff clustering algorithm. They incorporate global updates which generate new lattice configurations with little correlation to previous states, even near the critical point. We look to accelerate the rate at which these algorithm are capable of running by implementing and benchmarking a parallel implementation of each algorithm designed to run on GPUs under NVIDIA’s CUDA framework. A 17 and 90 fold increase in the computational rate was, respectively, experienced when measured against the equivalent algorithm implemented in serial code.

Keywords: Cluster algorithms; GPU acceleration (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183124500098
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:35:y:2024:i:01:n:s0129183124500098

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183124500098

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:35:y:2024:i:01:n:s0129183124500098