EconPapers    
Economics at your fingertips  
 

Parameter estimation for fractional-order nonlinear systems based on improved sparrow search algorithm

Yongqiang Zhou, Renhuan Yang, Yibin Chen, Qidong Huang, Chao Shen, Xiuzeng Yang, Ling Zhang and Mengyu Wei
Additional contact information
Yongqiang Zhou: Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, P. R. China†Department of Physics and Electronic Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, P. R. China
Renhuan Yang: ��College of Information Science and Technology, Jinan University, Guangzhou 510632, P. R. China
Yibin Chen: ��College of Information Science and Technology, Jinan University, Guangzhou 510632, P. R. China
Qidong Huang: ��College of Information Science and Technology, Jinan University, Guangzhou 510632, P. R. China
Chao Shen: ��College of Information Science and Technology, Jinan University, Guangzhou 510632, P. R. China
Xiuzeng Yang: ��Department of Physics and Electronic Engineering, Guangxi Normal University for Nationalities, Chongzuo 532200, P. R. China
Ling Zhang: �Experiment and Training Center, Guangzhou Vocational College of Technology & Business, Guangzhou 510632, P. R. China
Mengyu Wei: �Faculty of Science and Technology, University of Macau, Macau 999078, P. R. China

International Journal of Modern Physics C (IJMPC), 2024, vol. 35, issue 10, 1-14

Abstract: Parameter estimation is important in the study of control and synchronization of fractional-order nonlinear systems (FONSs). This paper proposes an improved Sparrow Search Algorithm (ISSA) for the parameter estimation problem of FONSs. The algorithm improves the population initialization, position update method of discoverers and warning sparrows based on Sparrow Search Algorithm (SSA), and the parameter estimation simulation experiment for fractional-order financial nonlinear system and fractional-order L nonlinear system is conducted to demonstrate this method. The experimental results show that the proposed ISSA is superior to the SSA, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO) in terms of parameter optimization accuracy and convergence speed, which validates the advantages of the ISSA.

Keywords: Fractional-order nonlinear systems; parameter estimation; improved sparrow search algorithm; swarm intelligent optimization algorithm (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.worldscientific.com/doi/abs/10.1142/S0129183124501316
Access to full text is restricted to subscribers

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:wsi:ijmpcx:v:35:y:2024:i:10:n:s0129183124501316

Ordering information: This journal article can be ordered from

DOI: 10.1142/S0129183124501316

Access Statistics for this article

International Journal of Modern Physics C (IJMPC) is currently edited by H. J. Herrmann

More articles in International Journal of Modern Physics C (IJMPC) from World Scientific Publishing Co. Pte. Ltd.
Bibliographic data for series maintained by Tai Tone Lim ().

 
Page updated 2025-03-20
Handle: RePEc:wsi:ijmpcx:v:35:y:2024:i:10:n:s0129183124501316