Extending the framework of algorithmic regulation. The Uber case
Florian Eyert,
Florian Irgmaier and
Lena Ulbricht
EconStor Open Access Articles and Book Chapters, 2022, vol. 16, issue 1, 23-44
Abstract:
In this article, we take forward recent initiatives to assess regulation based on contemporary computer technologies such as big data and artificial intelligence. In order to characterize current phenomena of regulation in the digital age, we build on Karen Yeung's concept of “algorithmic regulation,” extending it by building bridges to the fields of quantification, classification, and evaluation research, as well as to science and technology studies. This allows us to develop a more fine‐grained conceptual framework that analyzes the three components of algorithmic regulation as representation, direction, and intervention and proposes subdimensions for each. Based on a case study of the algorithmic regulation of Uber drivers, we show the usefulness of the framework for assessing regulation in the digital age and as a starting point for critique and alternative models of algorithmic regulation.
Keywords: algorithmic regulation; artificial intelligence; automated decisionmaking; big data; quantification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/228462/1/F ... ng-the-framework.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:espost:228462
DOI: 10.1111/rego.12371
Access Statistics for this article
More articles in EconStor Open Access Articles and Book Chapters from ZBW - Leibniz Information Centre for Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().