Proximate causes of forest degradation in the Democratic Republic of the Congo vary in space and time
Aurélie C. Shapiro,
Katie P. Bernhard,
Stefano Zenobi,
Daniel Müller,
Naikoa Aguilar-Amuchastegui and
Rémi d'Annunzio
EconStor Open Access Articles and Book Chapters, 2021, vol. 2
Abstract:
Forest degradation, generally defined as a reduction in the delivery of forest ecosystem services, can have long-term impacts on biodiversity, climate, and local livelihoods. The quantification of forest degradation, its dynamics and proximate causes can help prompt early action to mitigate carbon emissions and inform relevant land use policies. The Democratic Republic of the Congo is largely forested with a relatively low deforestation rate, but anthropogenic degradation has been increasing in recent years. We assess the impact of eight independent variables related to land cover, land use, infrastructure, armed conflicts, and accessibility on forest degradation, measured by the Forest Condition (FC) index, a measure of forest degradation based on biomass history and fragmentation that ranges from 0 (completely deforested) to 100 (intact). We employ spatial panel models with fixed effects using regular 25 × 25 km units over five 3-year intervals from 2002 to 2016. The regression results suggest that the presence of swamp ecosystems, low access (defined by high travel time), and forest concessions are associated with lower forest degradation, while built up area, fire frequency, armed conflicts result in greater forest degradation. The impact of neighboring units on FC shows that all variables within the 50 km spatial neighborhood have a greater effect on FC than the on-site spatial determinants, indicating the greater influence of drivers beyond the 25 km² unit. In the case of protected areas, we unexpectedly find that protection in neighboring locations leads to higher forest degradation, suggesting a potential leakage effect, while protected areas in the local vicinity have a positive influence on FC. The Mann-Kendall trend statistic of occurrences of fires and conflicts over the time period and until 2020 show that significant increases in conflicts and fires are spatially divergent. Overall, our results highlight how assessing the proximate causes of forest degradation with spatiotemporal analysis can support targeted interventions and policies to reduce forest degradation but spillover effects of proximal drivers in neighboring areas need to be considered.
Keywords: forest degradation drivers; panel models; conservation; spatial statistics; forest condition; forest disturbance; conservation planning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/235664/1/S ... egradation_Congo.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:espost:235664
DOI: 10.3389/fcosc.2021.690562
Access Statistics for this article
More articles in EconStor Open Access Articles and Book Chapters from ZBW - Leibniz Information Centre for Economics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().