Time Series for Spatial Econometricians
Michael Beenstock and
Daniel Felsenstein
Additional contact information
Michael Beenstock: Hebrew University of Jerusalem
Daniel Felsenstein: Hebrew University of Jerusalem
Chapter Chapter 2 in The Econometric Analysis of Non-Stationary Spatial Panel Data, 2019, pp 21-47 from Springer
Abstract:
Abstract Key developments in the econometric analysis of nonstationary time series are reviewed. We begin by defining nonstationarity, which arises when data generating processes (DGP) contain unit roots. The distinction is made between difference stationarity where time trends are stochastic, and trend stationarity where time trends are deterministic. We recall that hypotheses involving levels of nonstationary time series cannot be tested by using their first differences or their deviations from deterministic time trends. We also recall that in structural vector autoregressions the structural parameters are under-identified. Consequently, SVAR models merely provide ex post narratives for the time series involved. The concepts of “spurious” regression and “nonsense” regression, which arise when time series data are nonstationary, are introduced. The functional central limit theorem is presented, and its role in the asymptotic theory of nonstationary time series is described. Alternative statistical tests for unit roots are reviewed under the null hypotheses of nonstationarity and stationarity. Alternative statistical tests for spurious and nonsense regression (cointegration tests) are compared and contrasted. Parameter estimates for variables that are cointegrated are “super-consistent”. Instead of root—T consistency, as in stationary time series, they may be T—consistent or T1½—consistent depending on whether the data have stochastic time trends. Super-consistency radically changes the properties of estimators and the conditions for identification. In particular, OLS parameter estimates for endogenous variables are super-consistent. We also review panel unit root tests and cointegration tests for independent and strongly dependent panel data. Finally, we introduce ARCH models (autoregressive conditional heteroscedasticity), and distinguish between unconditional and conditional heteroscedasticity
Date: 2019
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:adspcp:978-3-030-03614-0_2
Ordering information: This item can be ordered from
http://www.springer.com/9783030036140
DOI: 10.1007/978-3-030-03614-0_2
Access Statistics for this chapter
More chapters in Advances in Spatial Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().