The Bicriterion Maximum Flow Network Interdiction Problem in s-t-Planar Graphs
Luca E. Schäfer (),
Tobias Dietz,
Marco V. Natale,
Stefan Ruzika,
Sven O. Krumke and
Carlos M. Fonseca
Additional contact information
Luca E. Schäfer: Technische Universität Kaiserslautern
Tobias Dietz: Technische Universität Kaiserslautern
Marco V. Natale: Technische Universität Kaiserslautern
Stefan Ruzika: Technische Universität Kaiserslautern
Sven O. Krumke: Technische Universität Kaiserslautern
Carlos M. Fonseca: University of Coimbra
A chapter in Operations Research Proceedings 2019, 2020, pp 133-139 from Springer
Abstract:
Abstract A biobjective extension of the maximum flow network interdiction problem is considered: Two maximum flows from source to sink are to be computed independently from each other while an interdictor aims to reduce the value of both maximum flows simultaneously by interdicting arcs. We show that this problem is intractable and propose two procedures to solve this problem on specific graph classes.
Keywords: Network interdiction; Dynamic programming; Multicriteria optimization (search for similar items in EconPapers)
Date: 2020
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:oprchp:978-3-030-48439-2_16
Ordering information: This item can be ordered from
http://www.springer.com/9783030484392
DOI: 10.1007/978-3-030-48439-2_16
Access Statistics for this chapter
More chapters in Operations Research Proceedings from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().