EconPapers    
Economics at your fingertips  
 

Hyers–Ulam Stability of Symmetric Biderivations on Banach Algebras

Jung Rye Lee (), Choonkil Park () and Themistocles M. Rassias ()
Additional contact information
Jung Rye Lee: Daejin University
Choonkil Park: Hanyang University
Themistocles M. Rassias: National Technical University of Athens

A chapter in Mathematical Analysis in Interdisciplinary Research, 2021, pp 555-572 from Springer

Abstract: Abstract In C. Park (Indian J Pure Appl Math 50:413–426, 2019), Park introduced the following bi-additive s-functional inequality: 1 ∥ f ( x + y , z − w ) + f ( x − y , z + w ) − 2 f ( x , z ) + 2 f ( y , w ) ∥ ≤ s 2 f x + y 2 , z − w + 2 f x − y 2 , z + w − 2 f ( x , z ) + 2 f ( y , w ) , $$\displaystyle \begin{aligned} \begin {aligned}{} & \| f(x+y, z-w) + f(x-y, z+w) -2f(x, z)+2 f(y, w)\| \\ & \quad \le \left \|s \left (2f\left (\frac {x+y}{2}, z-w\right ) + 2f\left (\frac {x-y}{2}, z+w\right ) - 2f(x, z )+ 2 f(y, w)\right )\right \|, \end {aligned} {} \end{aligned} $$ where s is a fixed nonzero complex number with |s|

Date: 2021
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:spochp:978-3-030-84721-0_24

Ordering information: This item can be ordered from
http://www.springer.com/9783030847210

DOI: 10.1007/978-3-030-84721-0_24

Access Statistics for this chapter

More chapters in Springer Optimization and Its Applications from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-04-01
Handle: RePEc:spr:spochp:978-3-030-84721-0_24