EconPapers    
Economics at your fingertips  
 

Sums of the Digits in Bases 2 and 3

Jean-Marc Deshouillers (), Laurent Habsieger (), Shanta Laishram () and Bernard Landreau ()
Additional contact information
Jean-Marc Deshouillers: Bordeaux INP, Université de Bordeaux, CNRS, Institut Mathématique de Bordeaux, UMR 5251
Laurent Habsieger: Université de Lyon, CNRS UMR 5208, Institut Camille Jordan
Shanta Laishram: Indian Statistical Institute
Bernard Landreau: Université d’Angers, CNRS, LAREMA Laboratoire Angevin de REcherche en MAthématiques, UMR 6093, FR 2962

A chapter in Number Theory – Diophantine Problems, Uniform Distribution and Applications, 2017, pp 211-217 from Springer

Abstract: Abstract Let b ≥ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N, one has Card { n ≤ N : s 3 ( n ) − s 2 ( n ) ≤ 0 . 1457205 log n } > N 0 . 970359 . $$\displaystyle{\mathop{\mathrm{Card}}\nolimits \{n \leq N: \left \vert s_{3}(n) - s_{2}(n)\right \vert \leq 0.1457205\log n\}\,>\, N^{0.970359}.}$$ The proof only uses the separate (or marginal) distributions of the values of s 2(n) and s 3(n).

Keywords: 11K16 (search for similar items in EconPapers)
Date: 2017
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-55357-3_9

Ordering information: This item can be ordered from
http://www.springer.com/9783319553573

DOI: 10.1007/978-3-319-55357-3_9

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2026-02-09
Handle: RePEc:spr:sprchp:978-3-319-55357-3_9