The Poincaré Polynomial of a Linear Code
Carlos Galindo (),
Fernando Hernando (),
Francisco Monserrat () and
Ruud Pellikaan ()
Additional contact information
Carlos Galindo: Universitat Jaume I, Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones de Castellón
Fernando Hernando: Universitat Jaume I, Departamento de Matemáticas, Instituto Universitario de Matemáticas y Aplicaciones de Castellón
Francisco Monserrat: Universidad Politécnica de Valencia, Instituto Universitario de Matemática Pura y Aplicada (IUMPA)
Ruud Pellikaan: Technische Universiteit Eindhoven, Discrete Mathematics
A chapter in Singularities, Algebraic Geometry, Commutative Algebra, and Related Topics, 2018, pp 525-535 from Springer
Abstract:
Abstract We introduce the Poincaré polynomial of a linear q-ary code and its relation to the corresponding weight enumerator. The question of whether the Poincaré polynomial is a complete invariant is answered affirmatively for q = 2, 3 and negatively for q ≥ 4. Finally we determine this polynomial for MDS codes and, by means of a recursive formula, for binary Reed-Muller codes.
Date: 2018
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-319-96827-8_23
Ordering information: This item can be ordered from
http://www.springer.com/9783319968278
DOI: 10.1007/978-3-319-96827-8_23
Access Statistics for this chapter
More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().