EconPapers    
Economics at your fingertips  
 

Diophantine Inequalities for Forms

Wang Yuan
Additional contact information
Wang Yuan: Academia Sinica, Institute of Mathematics

Chapter Chapter 11 in Diophantine Equations and Inequalities in Algebraic Number Fields, 1991, pp 140-162 from Springer

Abstract: Abstract A form F(λ) of degree k can be written as $$ F\left( \lambda \right) = \mathop{\sum }\limits_{{1 \leqslant {{i}_{1}}, \ldots ,{{i}_{k}} \leqslant s}} a\left( {{{i}_{1}}, \ldots ,{{i}_{k}}} \right){{\lambda }_{{{{i}_{l}}}}} \cdots {{\lambda }_{{{{i}_{k}}}}} $$ we associate the multilinear form $$ \hat F\left( \lambda \right) = \sum\limits_{1 \leqslant {i_1}, \ldots {i_k} \leqslant s} {a\left( {{i_{1, \ldots ,{i_k}}}} \right){\lambda _{{i_1}}} \ldots {\lambda _{{i_k}}}} $$

Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-642-58171-7_11

Ordering information: This item can be ordered from
http://www.springer.com/9783642581717

DOI: 10.1007/978-3-642-58171-7_11

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-12-10
Handle: RePEc:spr:sprchp:978-3-642-58171-7_11