EconPapers    
Economics at your fingertips  
 

Uniform Distribution of Values of Multiplicative Functions

Wenbin Zhang
Additional contact information
Wenbin Zhang: South China University of Technology Guangzhou, Department of Mathematics

A chapter in International Symposium in Memory of Hua Loo Keng, 1991, pp 347-353 from Springer

Abstract: Abstract Let n → ϕ(n) be a positive valued arithmetic function which tends to infinity as n → ∞. Following [5], we shall say that the values of ϕ are uniformly distributed in (0, ∞) (briefly, ϕ is u. d. in (0, ∞)) if there exists a positive constant c such that % MathType!MTEF!2!1!+- % feaagCart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtamaabm % aabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaad6eadaqadaqaaiaa % dIhacaGG7aGaeqOXdOgacaGLOaGaayzkaaGaaiOoaiabg2da9iaaco % cadaGadaqaaiaad6gacqGHflY1cqaHgpGAdaqadaqaaiaad6gaaiaa % wIcacaGLPaaacqGHKjYOcaWG4baacaGL7bGaayzFaaGaeSipIOJaam % 4yaiaadIhaaaa!51FB! $$N\left( x \right) = N\left( {x;\varphi } \right): = \# \left\{ {n \cdot \varphi \left( n \right) \leqslant x} \right\} \sim cx$$ as x → ∞. The number c will be called the density of values of ϕ. Also, we shall say that the values of ϕ are distributed with zero (respectively infinite) density in (0, ∞) if N(x)/x tends to zero (respectively infinity) as x → ∞.

Keywords: Multiplicative Function; Arithmetic Function; Zero Density; Generalize Integer; Integral Version (search for similar items in EconPapers)
Date: 1991
References: Add references at CitEc
Citations:

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:spr:sprchp:978-3-662-07981-2_21

Ordering information: This item can be ordered from
http://www.springer.com/9783662079812

DOI: 10.1007/978-3-662-07981-2_21

Access Statistics for this chapter

More chapters in Springer Books from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-11-30
Handle: RePEc:spr:sprchp:978-3-662-07981-2_21