Probabilistic Transient Stability Assessment and On-Line Bayes Estimation
Elio Chiodo () and
Davide Lauria ()
Additional contact information
Elio Chiodo: University of Naples Federico II
Davide Lauria: University of Naples Federico II
A chapter in Innovations in Power Systems Reliability, 2011, pp 259-312 from Springer
Abstract:
Abstract It is a well-known fact that the increase in energy demand and the advent of the deregulated market mean that system stability limits must be considered in modern power systems reliability analysis. In this chapter, a general analytical method for the probabilistic evaluation of power system transient stability is discussed, and some of the basic contributes available in the relevant literature and previous results of the authors are reviewed. The first part of the chapter is devoted to a review of the basic methods for defining transient stability probability in terms of appropriate random variables (RVs) (e.g. system load, fault clearing time and critical clearing time) and analytical or numerical calculation. It also shows that ignoring uncertainty in the above parameters may lead to a serious underestimation of instability probability (IP). A Bayesian statistical inference approach is then proposed for probabilistic transient stability assessment; in particular, both point and interval estimation of the transient IP of a given system is discussed. The need for estimation is based on the observation that the parameters affecting transient stability probability (e.g. mean value and variances of the above RVs) are not generally known but have to be estimated. Resorting to “dynamic” Bayes estimation is based upon the availability of well-established system models for the description of load evolution in time. In the second part, the new aspect of on-line statistical estimation of transient IP is investigated in order to predict transient stability based on a typical dynamic linear model for the stochastic evolution of the system load. Then, a new Bayesian approach is proposed in order to perform this estimation: such an approach seems to be very appropriate for on-line dynamic security assessment, which is illustrated in the last part of this article, based on recursive Bayes estimation or Kalman filtering. Reported numerical application confirms that the proposed estimation technique constitutes a very fast and efficient method for “tracking” the transient stability versus time. In particular, the high relative efficiency of this method compared with traditional maximum likelihood estimation is confirmed by means of a large series of numerical simulations performed assuming typical system parameter values. The above results could be very important in a modern liberalized market in which fast and large variations are expected to have a significant effect on transient stability probability. Finally, some results on the robustness of the estimation procedure are also briefly discussed in order to demonstrate that the methodology efficiency holds irrespective of the basic probabilistic assumptions made for the system parameter distributions.
Keywords: Stability Margin; Load Demand; Load Forecast; Transient Stability; Clearing Time (search for similar items in EconPapers)
Date: 2011
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ssrchp:978-0-85729-088-5_8
Ordering information: This item can be ordered from
http://www.springer.com/9780857290885
DOI: 10.1007/978-0-85729-088-5_8
Access Statistics for this chapter
More chapters in Springer Series in Reliability Engineering from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().