Optimal Design of Reliability Acceptance Sampling Plans for Multi-stage Production Process
M. Kumar ()
Additional contact information
M. Kumar: National Institute of Technology
A chapter in Reliability and Maintainability Assessment of Industrial Systems, 2022, pp 123-142 from Springer
Abstract:
Abstract One of the goals in manufacturing industry is to follow manufacturing standards which ensure that the manufactured products meet expectations of consumers. An Acceptance sampling plan is a tool to ensure that quality of products meet the minimum expected standards. In this chapter, an attempt is made to derive lot acceptance single and double sampling plans based on type ii censored data. The units in the lot have multiple quality characteristics and are processed through multi-stage process. We assume that the quality characteristics of units follow the exponential distribution. The acceptance criterion for the given lot is derived based on mean-life of units in the sample at every stage. Further, two non-linear optimization problems, which minimize the expected total testing cost at the acceptable quality level, are solved. In addition, sensitivity analysis studies are also conducted to assess the behavior of total testing costs with respect to change in producer’s and consumer’s risks and sample sizes. Several numerical examples and two case studies are presented to illustrate our resulting sampling plans.
Date: 2022
References: Add references at CitEc
Citations:
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:spr:ssrchp:978-3-030-93623-5_7
Ordering information: This item can be ordered from
http://www.springer.com/9783030936235
DOI: 10.1007/978-3-030-93623-5_7
Access Statistics for this chapter
More chapters in Springer Series in Reliability Engineering from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().