Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model
Annastiina Silvennoinen and
Timo Teräsvirta
CREATES Research Papers from Department of Economics and Business Economics, Aarhus University
Abstract:
A new multivariate volatility model that belongs to the family of conditional correlation GARCH models is introduced. The GARCH equations of this model contain a multiplicative deterministic component to describe long-run movements in volatility and, in addition, the correlations are deterministically time-varying. Parameters of the model are estimated jointly using maximum likelihood. Consistency and asymptotic normality of maximum likelihood estimators is proved. Numerical aspects of the estimation algorithm are discussed. A bivariate empirical example is provided.
Keywords: deterministically varying correlation; multiplicative time-varying GARCH; multivariate GARCH; nonstationary volatility; smooth transition GARCH (search for similar items in EconPapers)
JEL-codes: C32 C51 C58 (search for similar items in EconPapers)
Pages: 46
Date: 2017-08-31
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://repec.econ.au.dk/repec/creates/rp/17/rp17_28.pdf (application/pdf)
Related works:
Journal Article: Consistency and asymptotic normality of maximum likelihood estimators of a multiplicative time-varying smooth transition correlation GARCH model (2024) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aah:create:2017-28
Access Statistics for this paper
More papers in CREATES Research Papers from Department of Economics and Business Economics, Aarhus University
Bibliographic data for series maintained by ().