EconPapers    
Economics at your fingertips  
 

Relative and Discrete Utility Maximising Entropy

Grzegorz Hara\'nczyk, Wojciech S{\l}omczy\'nski and Tomasz Zastawniak

Papers from arXiv.org

Abstract: The notion of utility maximising entropy (u-entropy) of a probability density, which was introduced and studied by Slomczynski and Zastawniak (Ann. Prob 32 (2004) 2261-2285, arXiv:math.PR/0410115 v1), is extended in two directions. First, the relative u-entropy of two probability measures in arbitrary probability spaces is defined. Then, specialising to discrete probability spaces, we also introduce the absolute u-entropy of a probability measure. Both notions are based on the idea, borrowed from mathematical finance, of maximising the expected utility of the terminal wealth of an investor. Moreover, u-entropy is also relevant in thermodynamics, as it can replace the standard Boltzmann-Shannon entropy in the Second Law. If the utility function is logarithmic or isoelastic (a power function), then the well-known notions of the Boltzmann-Shannon and Renyi relative entropy are recovered. We establish the principal properties of relative and discrete u-entropy and discuss the links with several related approaches in the literature.

Date: 2007-09
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/0709.1281 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:0709.1281

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:0709.1281